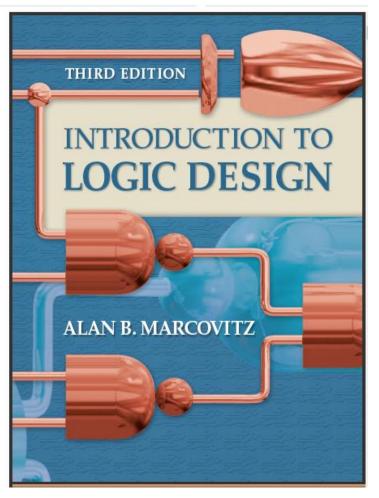
Digital Logic Design Lecture 2

Instructors:


Prof . Hala Zayed

Ass. Prof Mazen M. Selim

Dr Mona A. S. Ali

Text Book

Introduction to Logic Design 3rd Edition

Course Outline & Schedual

W #	Topics	Textbook Sections
1	Number systems	Ch 1 sec1-5 (Dr Mona)
2	Digital codes	Ch 1 reminder (Dr Mona)
3	Logic Gates	Ch 2 all (Dr Mona)
4	Boolen Algebra	Ch 3 (Dr Mona)
5	Switching functions and canonical forms & Quiz 1	Ch 3 (Dr Mona)
6	Simplification using Karnaugh maps	Ch 4 (Dr Mona)
7	Digital combinational logic (decoders, encoders, multiplexers, demultiplexers)	Ch5 (Ass. Prof Mazen)
8	Digital combinational logic (adders and subtractors)	Ch5 (Ass. Prof Mazen)
9	Digital combinational logic (comparators, multipliers, dividers)	Ch 5(Ass. Prof Mazen)
10	Sequential logic and flip flop (part I) Quiz 2	Ch 6 (Prof Hala)
11	Sequential logic and flip flop (part 2)	Ch6 (Prof Hala)
12	Analysis of sequential circuits	Ch7 (Prof Hala)
13	Design of sequential circuits	Ch8 (Prof Hala)
14	Counter circuits	Ch9 (Prof Hala)

CHAPTER 1

NUMBER SYSTEMS AND CODES

Contents

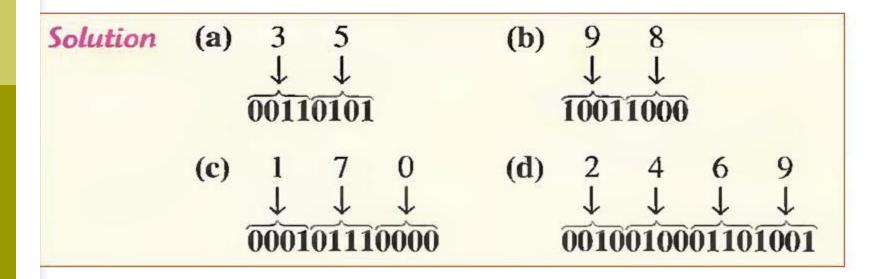
- BINARY CODED DECIMAL (BCD)
- □ THE ASCII CODE
- The Excess-3 Code
- ERROR-DETECTION CODE

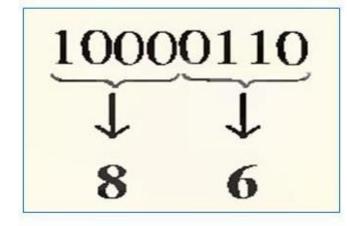
Binary Coded decimal

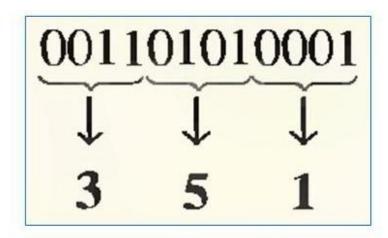
BCD

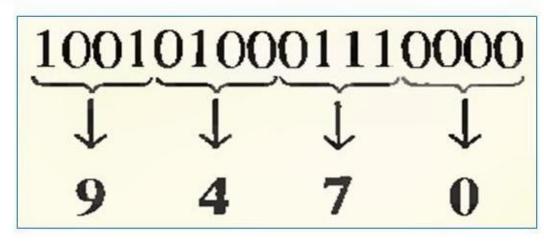
- Binary coded decimal (BCD) is a way to express each of the decimal digits with a binary code.
- There are only ten code groups in the BCD system.
- In BCD, 4 bits represent each decimal digit.
- The 8421 code is a type of BCD.
- BCD means that each decimal digit, 0 through 9, is represented by a binary code of four bits.
- The designation 8421 indicates the binary weights uf the four bits (2³, 2², 2¹, 2°).

Complements


Decimal/binary conversion


DECIMAL DIGIT	0	1	2	3	4	5	6	7	8	9
BCD	0000	0001	0010	0011	0100	0101	0110	0111	1000	1001


Decimal/binary conversion


- With four bits 16 numbers (0000 through 1111) can be represented.
- In BCD only ten of these are used.
- The six code combinations that are not used.
- 1010, 1011, 1100, 1101, 1110, and 1111-are invalid in the 8421 BCD code.

- To express any decimal number in BCD, simply replace each decimal digit with 4-bit code,
- Convert each of the following decimal numbers to BCD:
- (a) 35 (b) 98 (c) 170 (d) 2469

BCD Addition

Here is how to add two BCD numbers

- Add the two BCD numbers, using the rules for binary addition.
- If a 4-bit sum is equal to or less than 9, it is a valid BCD number.
- If a 4-bit sum is greater than 9, or if a carry out of the 4-bit group is generated, it is an invalid result. Add 6 (0110) to the 4-bit sum in order to skip the six invalid states and return the code to 8421. If a carry results when 6 is added, simply add the carry to the next 4-bit group.

The decimal number additions are shown for comparison.

(a)
$$0011$$
 3 $+ 0100$ $+ 4$ 7

(c)
$$1000 0110 86$$

 $+ 0001 0011 + 13$
 $1001 1001 99$

(d)
$$0100$$
 0101 0000 450 $+0100$ 0001 0111 $+417$ 1000 0110 0111 867

Example (invalid cases)

Example 1

The decimal number additions are shown for comparison.

(a)
$$1001$$
 9 $+0100$ $+4$ 1101 Invalid BCD number (>9) 13 $+0110$ Add 6 0001 0011 Valid BCD number 1 1 3


Example 2

(b)
$$1001$$
 9 $+ 1001$ $+ 9$ $1 0010$ Invalid because of carry 18 $+ 0110$ Add 6 0001 1000 Valid BCD number 1 8

Example 3

(c)	0001	0110		16
	+0001	0101		+ 15
	0010	1011	Right group is invalid (>9), left group is valid.	31
		+ 0110	Add 6 to invalid code. Add carry, 0001, to next group.	
	0011	0001	Valid BCD number	
	Ţ	Ţ		
	3	1		

Digital codes

BCD code is a numeric code.

Some other codes are alphanumeric.

- they are used to represent numbers, letters, symbols, and instructions.
- That is they are used to represent letters, numbers, symbols,
 - For example Gray code, ASCII Code.
 - Reading Assignment (Alphanumeric, EBCDIC, Error Detection and Correction code etc)

ASCII

- ASCII is the abbreviation for American Standard Code for Information Interchange.
- ASCII is a universally accepted alphanumeric code used in most computers and other electronic equipment.
- When you enter a letter. a number, or control command, the corresponding ASCII code goes into the computer.
- ASCII has 128 characters and symbols represented by a 7-bit binary code.
- Actually, ASCII can be considered an 8-bit code with the MSB always O.

ASCII

- The first thirty-two ASCII characters are nongraphic commands that are never printed or displayed.
- These are used for control purposes.
 - E.g. line of feed, null, start of text, escape etc.
- The other characters are graphic symbols that can be printed includes,
 - Letter of alphabet, 10 decimal digits, punctuation symbols and other commonly used symbols.

CONTROL CHARACTERS			GRAPHIC SYMBOLS												
NAME	DEC	BINARY	HEX	SYMBOL	DEC	BINARY	HEX	SYMBOL	DEC	BINARY	HEX	SYMBOL	DEC	BINARY	HEX
NUL	0	0000000	00	space	32	0100000	20	@	64	1000000	40	*	96	1100000	60
SOH	1	0000001	01	1	33	0100001	21	A	65	1000001	41	a	97	1100001	61
STX	2	0000010	02		34	0100010	22	В	66	1000010	42	b	98	1100010	62
ETX	3	0000011	03	#	35	0100011	23	С	67	1000011	43	c	99	1100011	63
EOT	4	0000100	04	\$	36	0100100	24	D	68	1000100	44	d	100	1100100	64
ENQ	5	0000101	05	%	37	0100101	25	Е	69	1000101	45	e	101	1100101	65
ACK	6	0000110	06	&	38	0100110	26	F	70	1000110	46	f	102	1100110	66
BEL	7	0000111	07		39	0100111	27	G	71	1000111	47	g	103	1100111	67
BS	8	0001000	08	(40	0101000	28	Н	72	1001000	48	h	104	1101000	68
HT	9	0001001	09)	41	0101001	29	1	73	1001001	49	i	105	1101001	69
LF	10	0001010	0A		42	0101010	2A	J	74	1001010	4A	i	106	1101010	6A
VT	11	1101000	OB	+	43	0101011	2B	К	75	1001011	4B	k	107	1101011	6B
FF	12	0001100	0C	4.	44	0101100	2C	L.	76	1001100	4C	1	108	1101100	6C
CR	13	0001101	OD	-	45	0101101	2D	М	77	1001101	4D	m	109	1101101	6D
so	14	0001110	0E		46	0101110	2E	N	78	1001110	4E	n	110	1101110	6E
SI	15	0001111	0F	1	47	0101111	2F	0	79	1001111	4F	0	111	1101111	6F
DLE	16	0010000	10	0	48	0110000	30	P	80	1010000	50	p	112	1110000	70
DC1	17	0010001	11	1	49	0110001	31	Q	81	1010001	51	q	113	1110001	71
DC2	18	0010010	12	2	50	0110010	32	R	82	1010010	52	r	114	1110010	72
DC3	19	0010011	13	3	51	0110011	33	S	83	1010011	53	S	115	1110011	73
DC4	20	0010100	14	4	52	0110100	34	Т	84	1010100	54	t	116	1110100	74
NAK	21	0010101	15	5	53	0110101	35	U	85	1010101	55	u	117	1110101	75
SYN	22	0010110	16	6	54	0110110	36	V	86	1010110	56	v	118	1110110	76
ETB	23	0010111	17	7	55	0110111	37	w	87	1010111	57	w	119	1110111	77
CAN	24	0011000	18	8	56	0111000	38	х	88	1011000	58	x	120	1111000	78
EM	25	0011001	19	9	57	0111001	39	Y	89	1011001	59	v	121	1111001	79
SUB	26	0011010	IA		58	0111010	3A	Z	90	1011010	5A	z	122	1111010	7A
ESC	27	0011011	1B	,	59	0111011	3B	1	91	1011011	5B	1	123	1111011	7B
FS	28	0011100	IC	<	60	0111100	3C	,	92	1011100	5C		124	1111100	7C
GS	29	0011101	1D	=	61	0111101	3D	1	93	1011101	5D	r r	125	1111101	7D
RS	30	0011110	1E	>	62	0111110	3E	۸ .	94	1011110	5E	1	126	1111110	7E
US	31	0011111	1F	?	63	0111111	3F	_	95	1011111	5F	Del	120	1111111	7F

Examples

- The first thirty-two ASCII characters are called the control characters.
- These are used to allow devices such as a computer and printer to communicate with each other when passing information and data.
- The extended ASCII characters are represented by an 8-bit code.
- Extended ASCII has additional 128 characters to present other symbols.
- The extended ASCII character set is presented in the table.

The Excess-3 Code

- **Excess-3** is a digital code related to BCD that is derived by adding 3 to each decimal digit and then converting the result of that addition to 4-bit binary.
 - **25** = 01011000
 - ADD THREE TO BOTH DIGITS TO BE 5 (0101) AND 8 (1000) THEN PUT THE REPRESENTATION OF ALL DIGITS TOGETHER.
 - \bullet 630 = 100101100011

Self-Complementing Property

- This means that the 1's complement of an excess-3 number is the excess-3 code for the 9's complement of the corresponding decimal number
- How?

ERROR-DETECTION CODE

- One of the most common ways to achieve error detection is by means of a parity bit.
- A parity bit is an extra bit included with a message to make the total number of 1's transmitted either odd or even.

Parity	bit

Odd parity		Even parity	
Message	\overline{P}	Message	P
0000	1	0000	0
0001	0	0001	1
0010	0	0010	1
0011	1	0011	O
0100	0	0100	1
0101	1	0101	0
0110	1	0110	O
0111	0	0111	1
1000	0	1000	1
1001	1	1001	O
1010	1	1010	O
1011	0	1011	1
1100	1	1100	O
1101	0	1101	1
1110	0	1110	1
1111	1	1111	0